首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9518篇
  免费   352篇
  国内免费   409篇
电工技术   293篇
综合类   250篇
化学工业   2273篇
金属工艺   1240篇
机械仪表   598篇
建筑科学   125篇
矿业工程   70篇
能源动力   555篇
轻工业   193篇
水利工程   34篇
石油天然气   230篇
武器工业   22篇
无线电   1281篇
一般工业技术   1504篇
冶金工业   213篇
原子能技术   146篇
自动化技术   1252篇
  2024年   4篇
  2023年   163篇
  2022年   199篇
  2021年   279篇
  2020年   276篇
  2019年   259篇
  2018年   245篇
  2017年   294篇
  2016年   247篇
  2015年   291篇
  2014年   494篇
  2013年   561篇
  2012年   441篇
  2011年   778篇
  2010年   480篇
  2009年   567篇
  2008年   547篇
  2007年   502篇
  2006年   434篇
  2005年   397篇
  2004年   371篇
  2003年   355篇
  2002年   314篇
  2001年   207篇
  2000年   199篇
  1999年   202篇
  1998年   188篇
  1997年   169篇
  1996年   140篇
  1995年   137篇
  1994年   106篇
  1993年   93篇
  1992年   80篇
  1991年   65篇
  1990年   46篇
  1989年   30篇
  1988年   36篇
  1987年   14篇
  1986年   21篇
  1985年   12篇
  1984年   3篇
  1983年   7篇
  1982年   6篇
  1981年   7篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1973年   3篇
排序方式: 共有10000条查询结果,搜索用时 22 毫秒
11.
《Ceramics International》2022,48(17):24383-24392
We propose a novel approach for manufacturing dual-scale porosity alumina structures by UV curing-assisted 3D plotting of a specially formulated alumina feedstock using a thermo-regulated phase separable, photocurable camphene/triethylene glycol dimethacrylate (TEGDMA) vehicle. In particular, 3D plotting process was conducted at - 5 °C, and thus an alumina suspension prepared using liquid camphene/TEGDMA at room temperature could undergo phase separation, resulting in camphene crystals surrounded by walls comprised of liquid photopolymer enclosing alumina particles. To enhance the shape retention ability of extruded filaments, polystyrene (PS) polymer was used as the tackifier. The phase-separated feedrod could be extruded favorably through a nozzle and rapidly photopolymerized by UV light during the 3D plotting process. Three-dimensionally interconnected macropores were tightly constructed, which were separated by microporous alumina filaments, where micropores were created by the removal of camphene crystals via freeze-dying. The macroporosity of porous alumina ceramics was controlled by adjusting the distance between deposited filaments, while their microporosity was kept constant, leading to tightly tailored overall porosity and mechanical properties.  相似文献   
12.
《Ceramics International》2022,48(11):15124-15135
Phase equilibria of the PbO-“FeO”-SiO2-ZnO, PbO-“FeO”-SiO2-Al2O3 and PbO-“FeO”-SiO2-MgO slags with liquid Pb metal, solid or liquid Fe metal and solid oxides (cristobalite and tridymite SiO2, willemite (Zn,Fe)2SiO4, wustite (Fe,Al)O1+x, spinel (Fe,Al)3O4, olivine Fe2SiO4, corundum (Al,Fe)2O3, mullite Al6Si2O13 and pyroxene (Mg,Fe)SiO3) were investigated at 1125–1670 °C. These conditions correspond to the minimum solubility of PbO in slag in presence of Pb and Fe metals at reducing conditions and represent the limit of lead smelting and slag cleaning process. High-temperature equilibration on silica, corundum or iron foil substrates, followed by quenching and direct measurement of Pb, Fe, Si, Zn, Al and Mg concentrations in the liquid and solid phases with the electron probe X-ray microanalysis (EPMA) was used. Present data can be used to improve the thermodynamic models for all phases in this system.  相似文献   
13.
To explore the mechanism of phase transformation, YTa3O9 was prepared by an integrated one-step synthesis and sintering method at 1500 °C using Y2O3 and Ta2O5 powders as starting materials. High-temperature XRD patterns and Raman spectra showed that a phase transformation from orthorhombic to tetragonal took place in YTa3O9 through the bond length and angle changes at 300–400 °C, which caused a thermal conductivity rise. To inhibit the phase transformation, a high-entropy (Y0.2La0.2Ce0.2Nd0.2Gd0.2)Ta3O9 (HE RETa3O9) was designed and synthesized at 1550 °C using the integrated solid-state synthesis and sintering method. In tetragonal structured HE RETa3O9, phase transformation was inhibited by the high-entropy effect. Furthermore, HE RETa3O9 exhibited low thermal conductivity, and its tendency to increase with temperature was alleviated (1.69 W/m·K, 1073 K). Good phase stability, low thermal conductivity and comparable fracture toughness to YSZ make HE RETa3O9 promising as a new thermal barrier coating material.  相似文献   
14.
Core–rim structures were observed as common features in Y-α-SiAlON ceramics hot-pressed between 1550?1950 °C. We found most dopants were taken into α’-rims, and a transition layer grown first on α-cores from liquid-phase over-saturated with metal solutes. Elongated β’-grain were formed as minor phase with α’- or AlN-cores thus only after the α’ matrix had consumed up all Y solutes, revealing that the α’ → β’ transformation is controlled by the transient liquid-phase and similar defects and dangling bonds could be detected in both SiAlON phases by cathodoluminescence. Quantitative assessment of Ym/3Si12?(m+n)Alm+nOnN16?n demonstrates the multiphase evolution, initiated by over-saturation of Y solutes at low temperatures thus retaining α-phase as cores to lower the infra-red transmittance, dictated by homogenization of Al solutes at higher temperature. The elimination of those phase boundaries leads to better dopant and sintering design for achieving transparent and high-performance SiAlON ceramics.  相似文献   
15.
《Ceramics International》2022,48(4):4722-4731
In recent years, phase change material emulsions (PCMEs) with enhanced energy storage capacities and good flow characteristics have drawn significant attention. However, due to the thermodynamically unstable nature and tiny particle confinement, the nanomaterial modification strategies at PCM/water interface to improve stabilities and reduce supercooling of nano-sized PCMEs (NPCMEs) are very limited and challenging. Herein, we report a facile strategy for constructing MXene-decorated NPCME with good stability, little supercooling, and high thermal conductivity by self-assembly of MXene nanosheets at PCM/water interface. The concentrations of MXene have great influences on the average droplet diameters, stabilities, and thermophysical properties of the NPCMEs. The results show that the PCMs have been well dispersed into the water in the form of quasi-spherical droplets, with average droplet diameters of 242–805 nm. The thermal conductivity of 10 wt% n-tetradecane/water NPCME containing 9 mg ml-1 MXene is 0.693 W m-1·K-1, achieving an enhancement by 15.5%, as compared to that of water. Besides, the MXene-decorated paraffin/water NPCMEs exhibit little supercooling and enhanced heat storage capacities. More importantly, this facile self-assembly strategy opens a new platform for preparing high-performance NPCMEs, which can be used as novel heat transfer fluids for thermal energy storage systems.  相似文献   
16.
针对低信噪比(SNR)环境下传统方法对声信号降噪的局限性,提出了一种联合自适应阈值活动语音检测(VAD)算法和最小均方误差对数谱幅度估计(MMSE-LSA)的实时降噪算法。首先,在VAD算法中通过基于能量概率最大值的概率统计来对背景噪声进行估计,对得到的背景噪声进行实时更新并保存;然后,将实时更新的背景噪声作为MMSE-LSA的参考噪声,并对噪声幅度谱进行自适应更新,最后进行降噪处理。通过在真实场景中对四类声信号进行实验,结果表明,该算法在保证对低SNR声信号的实时处理的情况下,相较于传统MMSE-LSA算法,降噪信号的SNR能够提高10~15 dB,且不存在信号过减的情况,可应用于实际工程。  相似文献   
17.
Conductometric and cloud point (CP) measurement studies have been performed to investigate the interaction of tetradecyltrimethylammonium bromide (TTAB) and Triton® X-100 (TX-100) with ciprofloxacin hydrochloride (CFH) in different solvents over the temperature range of 295.15–315.15 K. CFH is used for the treatment of various bacterial infections. The observed critical micelle concentration (CMC) values of TTAB were found to be reduced in the presence of electrolytes (Na2SO4/Na3PO4), and this reduction proceeds with the elevation of salt concentration. The order of the CMC of TTAB follows the trend: > >. The observed CMC values of TTAB were found to increase with increasing temperature and decrease with increasing concentration of CFH in aqueous medium. The values of Gibbs free energy of micellization () for the TTAB/TTAB + CFH mixture were found to be negative, implying spontaneous micellization. The estimated CP of TX-100 decreases with increasing concentration of TX-100 in aqueous medium. The CP values first decrease with increasing concentration of CFH and then increase at higher concentration of CFH almost in all cases investigated. The values of free energy of clouding were found to be positive in all cases studied implying that phase separation of TX-100 was nonspontaneous. The other thermodynamic parameters associated with the micellization of TTAB and the phase separation of TX-100 were estimated and explained.  相似文献   
18.
《Ceramics International》2019,45(8):9799-9806
(Nb1-xTax)4AlC3 (x = 0–0.5) ceramics were prepared by the hot press sintering method. The XRD results show that the second phase (Nb1-xTax)C is formed when the Ta content increases to 25 mol%. The SEM micrographs show that (Nb1-xTax)C has a core/rim structure, whose formation mechanism was also investigated. Substituting some Ta for Nb can significantly improve the mechanical properties of Nb4AlC3. (Nb0.75Ta0.25)4AlC3 exhibits an excellent fracture toughness of 8.3 ± 0.3 MPa m1/2 at room temperature (RT). The highest Young's modulus (349 ± 16 GPa) and Vickers hardness (4.5 ± 0.3 GPa) at RT are exhibited by the (Nb0.5Ta0.5)4AlC3 sample, which correlate to increases of 18% and 80%, respectively, compared with those of Nb4AlC3. The flexural strengths of (Nb0.5Ta0.5)4AlC3 are 439 ± 18 MPa at RT and 344 ± 22 MPa at 1100 °C, which correlate to increases of 27% and 45%, respectively, compared with those of Nb4AlC3. The solid solution of Ta and the formation of (Nb1-xTax)C are beneficial to the strengthening of Nb4AlC3. The coefficient of thermal expansion (CTE) increases slightly from 7.08 × 10−6 K−1 for Nb4AlC3 to 7.24 × 10−6 K−1 for (Nb0.75Ta0.25)4AlC3 at 25–1400 °C. The thermal conductivity of (Nb0.75Ta0.25)4AlC3 (28.4–29.8 W/m·K) is higher than that of Nb4AlC3 (18.1–21.2 W/m·K) over the whole test range (25–1000 °C). Owing to their excellent mechanical and thermal properties, Ta-doped Nb4AlC3 ceramics have good potential as structural materials.  相似文献   
19.
Casting magnesium alloys hold the greatest share of magnesium application products due to their short processing period, low cost and near net shape forming. Compared with conventional commercial magnesium alloys or other Mg–RE-based alloys, the novel Mg–RE–TM cast alloys with long period stacking ordered(LPSO) phases usually possess a higher strength and are promising candidates for aluminum alloy applications. Up to now, two ways: alloying design and casting process control(including subsequent heat treatments), have been predominantly employed to further improve the mechanical properties of these alloys. Alloying with other elements or ceramic particles could alter the solidifi cation pattern of alloys, change the morphology of LPSO phases and refi ne the microstructures. Diff erent casting techniques(conventional casting, rapidly solidifi cation, directional solidifi cation, etc.) introduce various microstructure characteristics, such as dendritic structure, nanocrystalline, metastable phase, anisotropy. Further heat treatments could activate the transformation of various LPSO structures and precipitation of diverse precipitates. All these evolutions exert great impacts on the mechanical properties of the LPSO-containing alloys. However, the underlying mechanisms still remain a subject of debate. Therefore, this review mainly provides the state of the art of the casting magnesium alloys research and the accompanying challenges and summarizes some topics that merit future investigation for developing high-performance Mg–RE–TM cast alloys.  相似文献   
20.
Polycrystalline LaMgAl11O19 (LMA) was prepared by four different non-hydrolytic sol-gel methods. From stable solutions, four powder precursors containing an amorphous and nanocrystalline phase with specific reactivity were obtained. The particle size, morphology, thermal behaviour, and phase composition of the powder precursors were studied using DLS, TEM, DSC/TG and XRD. Bulk ceramic samples containing LMA were prepared at 1200?°C for 16?h and examined in terms of phase purity and microstructure using XRD, SEM, and TEM. Raman spectroscopy of pure LMA was used to study the structure in detail. A mechanism of LMA formation and a relation between powder precursor properties and final phase composition is proposed. These findings may be useful for designing modern technologies for fabrication of LMA for optical or protective coating applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号